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Abstract

Let m be a measurable bounded function and let us assume that there exists a
bounded functions S so that m(&)S(£)"" is a Fourier multiplier on L? uniformly in reR.
Then, using the analytic interpolation theorem of Stein, one can show that necessarily m is a
L? multiplier. The purpose of this work is to show that under the above conditions, it holds
that, for every ke N, m(log S)keMp. The technique is based on the Schechter’s interpolation
method.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let I<p< oo and let M, be the class of measurable bounded functions such that
the operator given by

1 (x) A&m(&)e = de,

R"

where f is the Fourier transform, is bounded on L?(R"). M, is the so-called
class of Fourier multipliers on L”, and [|m||), denotes the norm of the
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corresponding bounded operator. Well-known properties about M, are for
example:

(1) M, is a Banach algebra contained in M, = L* and M, = M,;, where 1/p +
1/p =1

(2) If me M), and g€[p,p'], then me My, and ||m||,, <|[|m||,, .

The theory of multipliers has been widely studied for a long time up to our days
(see, for example, Refs. [9,11,13,14,16] just to mention a few of them and the works
[8,10]). One of the technique which is an extremely useful tool to deal with multiplier
questions is the theory of interpolation (see [1,2]). In particular, property 2, above
mentioned, is proved by using the classical Riesz—Thorin interpolation theorem.

Let now m be a measurable function and let us assume that there exists a bounded
function S so that

m(&)S(E)"'eM,

uniformly in e R. Then, using appropriately the analytic interpolation theorem of
Stein (see [15]), one can show that necessarily me M,.
The purpose of this work is to show that under the above conditions, it holds that,

for every keN, m(logs)* eM,. The technique is based on the Schechter’s
interpolation method (see [12]).

The paper is organized as follows: in Section 2, we present the main tool we need
to show our main result (Theorems 3.2 and 4.5); that is we need some features about
Schechter’s interpolation method. For simplicity in the explanation of our method,
we shall present, in Section 3, all our results for the case of the first derivative
(n = 1), but we want to emphasize that, up to some computations, all the results can
be extended to a general ne N. We shall state the main results for the case n> 1 in the
last section.

Given two Banach spaces 4 and B, we write A~ B to indicate that they have
equivalent norms and 4 = B means that 4~ B and that the constants in the
equivalence are independent of 6.

We shall write a universal constant C if C = C(0) remains bounded when 0 —0
and, such universal constants C may change from one occurrence to the next. As
usual, the symbol f ~¢g will indicate the existence of a positive universal constant C
so that (1/C)f <g<Cf and, by f <g we mean that / < Cg. As(y) = u{x;|f(x)| >y} is
the usual distribution function and 17-* is defined as the set of measurable functions

SO that |If||p‘o: = Supy>oyl/17)¥f.(y) < 00.

2. Schechter method of interpolation

Let us start by giving a short description of the main objects of our method.
Let Q@ = {zeC;0<Rez<1} be the unit strip and A4(Q) is the algebra of Q; that is
the set of analytic functions on © and continuous on Q. Let 4 = (4p,4;) be a

compatible couple of Banach spaces and let % (A4) = #(A4y, A1) be the space of
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analytic vector functions of the Calderon complex interpolation method (see [3]);
that is, the set of all functions f : Q— 4y + A, such that
(i) for every le (Ao + A1)", I(f(") e A(Q),
(i) f(z)ed; for Rez=jand j=0,1,
(iii) f(j + i) is Aj-continuous,
F(a) = maxj—o,1 sup,.o {[If (F + it)|| 4, } < 0.

Let

G(A) = (A, A)) = {Z @;x;; X € Agn Al q)leA(Q)}

finite

and let us recall that %(A) is dense in Z(4) (see [3]).
The classical complex interpolation space (Calderon space) is defined, for
0<f0<1, by

Ay ={a=[(0);fe7(A)}
with norm [lal| 5, = inf{Hf||y(A);a =1(0)}.
In [12], the following interpolation spaces were introduced:
Ago ) = [Ao, Aty ) = {xedo + Ai; I eF(4), [7(0) = x}
with the norm

L., = inf Il £7(0) = %3,

and {4y, 4} 5 (0) is the completion of the intersection 4y A; with respect to the
norm

#1); 9€9(A), g™ (0) = x}.

||x| |{A0,A1}5(”)(
Also,
A

RRIC)!

:[A07A1]5<”>(9)

={xedo+Ay; IfeF(A), fO)=x, f™O)=0, m=1,...,n}

with the corresponding norm of the infimum and {4, 4 I}W @ defined in analog
way with %(A4) instead of Z(A4). We shall call them Schechter spaces. If 4 =

(Lo, LPr), then Aéw((}) = {A07A1}5(n and 49”0 — = {4, Al} 9 and we shall refer
to them as the first and second Schechter method, respectively.

Remark 2.1. Some general facts concerning these spaces which will be useful in the
sequel are the following:

(i) If ae Ag and ¢, : Q— D is a conformal map from  onto the unit disc D so that
©y(60) = 0, then,

|0p(0)] = 2sm s
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and thus |¢j(0)] = O(1/0) when 0—0. Therefore, if F €% is such that F(0) = a, the
function G = ¢yFeZ satisfies that ||G||, = ||F||; and G'(0) = ¢,(0)a. Hence,
Ap< Ay g with norm less than or equal to 2 sin 76.

(ii) If FeZ satisfies that F(0) =0, then G = F/pye.7 and F'(0) = ¢;,(0)G(0).
Therefore, F'(0) e Ag and ||F'(0)|]y <532 ||F|| +-

From now on, ¢4 will be the conformal map from @ onto D we have mentioned
above.

Let us now recall the definition of Calderon analytic families of operators
(see [4,7]):

Definition 2.2. Let (A4y,4,) and (By, B;) be two compatible couples of Banach
spaces. Let L = {L¢}. g be such that

Le:AgynA1— By + By.

We say that L is a Calderdn analytic family of operators and we write Le C, if the
following conditions hold:
(i) for every /e (By + By)* and every ae Ay A, the function {/, L:a) € A(Q),
(i1) for every te R,

Liva: (oA, | 11,)~ By 1] 115)

is bounded and there exist two continuous functions M;:R—R" so that
log M;(-)e L' (1;(&,-)), where g is the Poisson kernel for @ (j=0,1) and
1Ll | < M (1), )

(iii) for every ae Ay N A, the function M~'L.ae # (B), where M = exp(¥) and ¥
is an analytic function in Q whose real part is

1 0
Z/ log M;(1)w;(&,1) dt.
j=0 /=

Moreover, if ||M||,, <1, we say that L is a uniformly bounded Calderon analytic
family and we write Le BC.

Then, the following extension of the theorem of Stein (see [15]) and Theorem 1 in
[7] was proved in [4]:

Theorem 2.3. Let (Agy, A1) and (By, By) be two compatible couples of Banach spaces
and let Le BC. Then,

5t

(L&) (0) : {40, 41}"" " > By,
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is bounded with norm less than or equal to 1; that is

NG _
(L) O)allg,,,, <llall,, 4 oo

Now, let us assume that, for each 0 <6< 1, we consider a family LieBC. Then, by
Theorem 2.3, we can conclude that

fim 1L O)alls,,,,, < im llall ,, , yon0- (1)

Our purpose now is to show that inequality (1) gives us, when applied to the
couples A = (LP°(u), L7 (1)) and B = (L% (v), L9 (v)), a sufficient condition for the
(po,qo) boundedness of the linear operator Tf = limgy_, 0”(Lg)(")(0), whenever this

limit exists. As a consequence, we shall get the announced multiplier result.
From (1), we notice that one of the things we have to do is to study the behavior of

the Schechter interpolation spaces (L (w), L' (1)) 0 and {L7(u), L7 (,u)}é(n)w

when 0 goes to zero.
For the classical Calderon interpolation spaces, it is known that (L7 (u), L' (1)),
is isometric to L) () where, as usual,
1 1-6 6
— =+ — 2
p(0)  pop @
and hence, for every f'e L7 (u) n L (u),

0 1111 g 0,21y, = 1 -
In what follows, p(0) will be defined by (2).
Also, it is known (see [5,6]) that
L7 (), L (1) 9y = (L (), L7 () 30y = Ly
and
{27 (), 2 ()} = (o), L (1) " = L,
where Ly and L, are Orlicz spaces with
_ r A\ _ o(0)
00 = (1ogr)  and (0= (1 + loga)".

However, the constants in the above equivalence depend on 0 and hence, our first
goal consists in finding a better equivalence than the above one.
In this section, we shall prove the equivalence of the spaces (L7, L") 50(0) and

(Lpo, L7 )(S(H)(g) with some Orlicz spaces so that the constants in such equivalence do
not depend on 6.
Let us start by analyzing the right-hand side of (1). In Ref. [6] it was shown that

i )"EW}

log

{LPO,LP‘}‘S'(*H) = (LPO,LP‘)‘SS*") = ¢ f measurable; /| 1+
10
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and

fl1+ =
( |V||p<0>> ”

Modifying slightly the proof of the above theorem (we include here the new proof
for the sake of completeness) we get the following result:

||f|\ FOBS

Lo Ul) 0

log

97n|[f|| ) -

(Lo, Lr1)°0

Theorem 2.4. fe(L”O,Lpl) ) if and only if f(1 + |log|f||) e L’ and

0(po — X
(po —p1) flog A
Pl + 0lpo — p1 /1l p0) 20)

HfH (Lr0,10) 3(0) ~ Hf”

Proof. Letfe (LP0 yig )‘) and let ¢>0. Then, there exists F € # such that F (9) =1,
F'(0) = 7 <|If| (o iy Tt The first condition implies that f € L7(") and

1110
Let H = F — Hy, where

£\ e+
H(&) =L o)
I\ o) 7o
Then H(0) =0 and
H/ 0): (po_Pl) flOg lf‘
O = 00— Wil
Hence, by Remark 2.1(ii),f10g%eﬂ’(0), and
D
£ log I/ <P1+9(P0—P1)|
1l 0) o(6) =~ 0Olpo — pi
p1+0(po —p1) : p1+0(po — p1)
Sw( 3‘7+|V‘|p(0))sW”F 7
Therefore,
0(po — p1) S
+ 0 < ) + E.
HfH p1+0|p0_p1| f ngHpg Hf“(Lﬂ(JL/l) ()

Letting ¢ tend to zero, we are done.
Conversely, if £(1 + log||f])e L’ and we call g = f log Hfllllf‘ , we only have to

consider the function

p1+0(po—p1)

G =)

Hy — ppH,
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to see that f e (L7, L )5’<0) and that the corresponding inequality for f'e (L, L™ )5I<0>
holds. O

Theorem 2.5. For every f € [P°nLP', we have that

K (1] g g0 2 W11y

Corollary 2.6. Let L: (L7, LP")— (LF°, L") be a uniformly bounded Calderon analytic
family of operators. Then, for every f e P ILP,

o (1 Lo/ Wi ), S 1V Mo

To analyze the left-hand side of (1) and also of Corollary 2.6, we have to study the
behavior when 0 tends to zero of the first method of Schechter. Carro and Cerda [5]
proved that

[LPo, [P ] )X My,
where
My ={f: f =fo+filoglfil: fo.ie "7}
endowed with the norm
HfHM.,, ~||fo + /1 log “lep(H)”p(ﬂ) + Hfl||p(6)7
and the constants in the above equivalence are as follows:

114y, S W1, S04,

To avoid the dependence in 0 of the above constants, we have to modify the proof
of Theorem 3.1 in [5] to obtain the following one:

5(7) (0

Theorem 2.7. Let

My, = {f L

1l
il

g +/ilog ; foohh eL”((’)}

with

1 Wagy, = E{[foll0) + [Vill)

where the infimum extends to the collection of all functions fy and f| satisfying that

=8+ filog|fil/Ilfill o) Then.

(e, )(5’(9) = My,.
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To study the space My,, set
70(x) =5 (1+ Ollog x]).
Obviously, y, is an increasing and one-to-one function from R onto R™ and hence
we can define the increasing and one-to-one function
Vo= (35",

Then, one can easily see that

1/p(0) 0
vl (x —x—<1+— lo x).

From this expression we get that ¥y(x) =~ (0x(1 + L|log x\)fl)pw) and hence there
exists a constant C such that ¥(2¢) < CYP(2). Therefore

Ln, = { s [ wallr de< + o }

is a linear space. Set

lls, =inf{k>o;/%(wlj>') dx<1}.

Since, in general ¥y is not a convex function, we do not have that the above
expression is a norm but we have the following properties:

@ 141y, = [2llf |y, for every ZeR,
(ii) if [[f]ly, = 1 then [ Wy(|f(x)]) dx =1,

(i) [[f[ly, <O/ 1],
(iv) if A is such that

2W,(t/A
sup o(1/A)
t lPH(t)
then
I+ glly, <24/ |y, + lglly,)-

<1

Theorem 2.8.
Ly, =My

0°

Proof. Let p = p(0) and let us assume without loss of generality that f>0. If
lflly, =1, we have that [¥y(f) =1, and hence, if g = Wo(f)'/7, we obtain that
gel” and [lg]|, = 1. Now,

S =" (Po()) =20(Fo(N") = 70(9) =

and thus |U"||M% <l

I

(14 0flog g]),
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Let f = fo/0 4+ fi log I H Then, for k to be chosen later on

/ max ([ + /i log k. ] (log 21 1)
/@<mm0</%< €T,
8+ £ log k| /1 l(log i)
</W< mmp>+/w% €I,
b filogh\" 1
<“/<6Mmm )*F

2 (Il
< —| 775+ |logk” + 1,
k”(“fl”ﬁ

and using that logk<k/e, we get that if

k:umm+wmmf”@ﬂ_ewyw

Al

then

1
L/W<%Wu><l

Therefore, ||f|]y, <2(277 — efp)il/p(HfOHp +lAll,). O

Theorem 2.9. For every 0<0<1, it holds that
(L7, L")y 9) = L,

Lemma 2.10.
(1) For everyfeLP" NP,

lim Ilfl\lp(, 1y,

(ii) For every f,

.1
o S i 511/l

Proof. (i) First we observe that if f € L/° n [/, then

0
1110y < IV 1L 11,
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And using Remark 2.1(i), we have that
lim Ilflllp(, Hf”AD, < lim [[71]4,
- ggno |V||p(0><g;n5 V11 11, = 1171
(i1)) To prove the second part, we observe that

wg(%)zf(t)g /OU sw)(lf(j)') dx

and therefore,

]y, >inf{l>0; sup Yo(z/2)Ar(2) <1 }
z>0

7;/( )1/,; 0)

Now, sup..o Po(z/2)Ar(z) <1 if and only if 1>0 supz 0 021 )
p( )8 A2

, and, hence,

/1]( )1/1’(9)
1+ 5 llog 2 (2)|

HfH'P(, QSUP

From this, we deduce that, for every z>0,

2 (z )'/P 0)
Lo < tim = [flly,,
0-0 1+ 55 llog 2¢(2)] ™ =0 0

and hence

Ilfl\,,oooshm—llfllwg O

Theorem 2.11. For every fe P nLP', it holds that

lim Ilfllny(, 1115,

Proof. Let Ay = §||f||y,- Then, by the previous lemma, we have that, if /0,

0< lim Ap< hm A< 0,
0—-0

and hence limg_,¢ 0|log(y/(049))| = 0. Therefore,

) y ¥ Po
lim ¥ == .
70 ”(m) (lim()qo lo)
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From this, using Fatou’s lemma we get that
Po Po
(o) = o) o< [ o)
< lim %(%)del,

0-0 A0

from which the result follows. [

In fact, modifying slightly the above proof, one can easily see that something
stronger holds:

Theorem 2.12. If fy converges to f almost everywhere, then

1
1 1lpe = Jim 5 1lfolly,-

lir
0—-0

3. A multiplier result
Let us formulate our main result.

Theorem 3.1. Let T be a linear operator such that, for every 0, there exists a uniformly
bounded Calderdn analytic family of operators LV : (L, [PV)— (L%, L1") so that, for
every fe L AL, O(LY)yf converges to Tf almost everywhere. Then

T:L"—L%®
is bounded.

Proof. By Theorem 2.3, we have that

1

0L L, IV 0y
Then, letting 0—0 and applying Theorems 2.5 and 2.12, we get that, for every
felrlnlr:

TS g SVl O

In the following example, we have that (L’); =1 T, and hence the conclusion of
our theorem holds.

Theorem 3.2. Let me L™ and let us assume that there exists a bounded function S such
that

m(¢) it
% S(&)" eM,,

uniformly in teR. Then, m(log S)e M,.
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Proof. Let f be in the Schwartz class of rapidly decreasing C* functions and let K
be a compact set in R”. Let us consider the operators

3

T2f (%) = 1k (%) / G ((25(6)2/ Oe2mixé g,

|9%]

Then, if z=ir, we have, by hypothesis, that T5f €L’ and sup,cg || Tf1],, =
C) < . Also, using the dominated convergence theorem, one can show that Ti(zf is
an [I7-continuous function in the variable 7. On the other hand, using the
boundedness of S, one can immediately see that 77, ,f € L? uniformly in 7€ R with

1+
constant ||[m/S||, | \SHLCm, and this function defines an L*-continuous function in the

variable ¢. Hence, if we consider the analytic families of operators

TO: (17, L*)—(L", L?),

(1-0), —
and My(¢) = C @ © with C =max(Cy,||S]|,,), we obtain that the family L¢ =
T9/MyeBC and

@y -

(T - L)a

where L = LZ and T is the operator associated to the multiplier m log S. Now, we
know (see [7]) that L = L{): 7)) - L49) uniformly in 6 and hence L: L7 — L is
bounded.

From this and Theorem 3.1, it follows that the operator T is bounded on L”.
Expanding K up to R", we get the conclusion of the theorem. [J

4. The case n>1

As was said in the introduction all the results of this paper can be extended to the
general case ne N. In particular, the following results hold:

Theorem 4.1. For every fel?° NP,

(1)1:1}}) |lf| ‘(U’o’yl )5(”)«’) ~ Hf”po

Theorem 4.2.

(LPO,LPI)(;(,,) — L?’

no?

(0)
where ¥, 9 = (yrzé)p(o) and 7y, 9(x) = 3(n+ 0log x)".



M.J. Carro | Journal of Approximation Theory 120 (2003) 283-295 295

Theorem 4.3.
(1) For every felP NP,

tim == 11/, <11,

From these results, one can easily deduce the following generalization of Theorem
3.1 and the corresponding extension of Theorem 3.2.

Theorem 4.4. Let T be a linear operator such that, for every 0, there exists a uniformly

bounded Calderdn analytic family of operators LY: (LPo,LP")— (L L1 so that

0" (Lo)g')f converges to Tf almost everywhere, for every f e’ L. Then
T:LM—L®

is bounded.
Theorem 4.5. Under the hypotheses of Theorem 3.2, we have that, for every keN,

m(log S)* e M,.
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