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Abstract

Let m be a measurable bounded function and let us assume that there exists a

bounded functions S so that mðxÞSðxÞit�1 is a Fourier multiplier on Lp uniformly in tAR:
Then, using the analytic interpolation theorem of Stein, one can show that necessarily m is a

Lp multiplier. The purpose of this work is to show that under the above conditions, it holds

that, for every kAN; mðlog SÞkAMp: The technique is based on the Schechter’s interpolation

method.
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1. Introduction

Let 1pppN and let Mp be the class of measurable bounded functions such that

the operator given by

Tf ðxÞ ¼
Z
Rn

f̂ðxÞmðxÞe2pixx dx;

where f̂ is the Fourier transform, is bounded on LpðRnÞ: Mp is the so-called

class of Fourier multipliers on Lp; and jjmjjMp
denotes the norm of the
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corresponding bounded operator. Well-known properties about Mp are for

example:
(1) Mp is a Banach algebra contained in M2 ¼ LN and Mp ¼ Mp0 ; where 1=p þ

1=p0 ¼ 1:
(2) If mAMp and qA½p; p0	; then mAMq; and jjmjjMq

pjjmjjMp
:

The theory of multipliers has been widely studied for a long time up to our days
(see, for example, Refs. [9,11,13,14,16] just to mention a few of them and the works
[8,10]). One of the technique which is an extremely useful tool to deal with multiplier
questions is the theory of interpolation (see [1,2]). In particular, property 2, above
mentioned, is proved by using the classical Riesz–Thorin interpolation theorem.

Let now m be a measurable function and let us assume that there exists a bounded
function S so that

mðxÞSðxÞit�1AMp

uniformly in tAR: Then, using appropriately the analytic interpolation theorem of
Stein (see [15]), one can show that necessarily mAMp:

The purpose of this work is to show that under the above conditions, it holds that,

for every kAN; mðlog SÞkAMp: The technique is based on the Schechter’s

interpolation method (see [12]).
The paper is organized as follows: in Section 2, we present the main tool we need

to show our main result (Theorems 3.2 and 4.5); that is we need some features about
Schechter’s interpolation method. For simplicity in the explanation of our method,
we shall present, in Section 3, all our results for the case of the first derivative
ðn ¼ 1Þ; but we want to emphasize that, up to some computations, all the results can
be extended to a general nAN: We shall state the main results for the case n41 in the
last section.

Given two Banach spaces A and B; we write AEB to indicate that they have
equivalent norms and A ¼ B means that AEB and that the constants in the
equivalence are independent of y:

We shall write a universal constant C if C ¼ CðyÞ remains bounded when y-0
and, such universal constants C may change from one occurrence to the next. As
usual, the symbol fEg will indicate the existence of a positive universal constant C

so that ð1=CÞfpgpCf and, by ftg we mean that fpCg: lf ðyÞ ¼ mfx; jf ðxÞj4yg is

the usual distribution function and Lp;N is defined as the set of measurable functions

so that jjf jjp;N ¼ supy40 y1=plf ðyÞoN:

2. Schechter method of interpolation

Let us start by giving a short description of the main objects of our method.
Let O ¼ fzAC; 0oRe zo1g be the unit strip and AðOÞ is the algebra of O; that is

the set of analytic functions on O and continuous on %O: Let %A ¼ ðA0;A1Þ be a

compatible couple of Banach spaces and let Fð %AÞ ¼ FðA0;A1Þ be the space of
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analytic vector functions of the Calderón complex interpolation method (see [3]);

that is, the set of all functions f : %O-A0 þ A1 such that

(i) for every lAðA0 þ A1Þn; lðf ð�ÞÞAAðOÞ;
(ii) f ðzÞAAj for Re z ¼ j and j ¼ 0; 1;

(iii) f ðj þ i�Þ is Aj-continuous,

(iv) jjf jjFð %AÞ ¼ maxj¼0;1 supt40 fjjf ðj þ itÞjjAj
goN:

Let

Gð %AÞ ¼ GðA0;A1Þ ¼
X
finite

jjxj ; xjAA0-A1; jjAAðOÞ
( )

;

and let us recall that Gð %AÞ is dense in Fð %AÞ (see [3]).
The classical complex interpolation space (Calderón space) is defined, for

0oyo1; by

%Ay ¼ fa ¼ f ðyÞ; fAFð %AÞg
with norm jjajj %Ay

¼ inffjjf jjFð %AÞ; a ¼ f ðyÞg:
In [12], the following interpolation spaces were introduced:

%AdðnÞðyÞ ¼ ½A0;A1	dðnÞðyÞ ¼ fxAA0 þ A1; (fAFð %AÞ; f ðnÞðyÞ ¼ xg

with the norm

jjxjj %A
dðnÞðyÞ

¼ inffjjf jjFð %AÞ; f ðnÞðyÞ ¼ xg;

and fA0;A1gdðnÞðyÞ is the completion of the intersection A0-A1 with respect to the

norm

jjxjjfA0;A1gdðnÞðyÞ
¼ inffjjgjjFð %AÞ; gAGð %AÞ; gðnÞðyÞ ¼ xg:

Also,

%AdðnÞðyÞ ¼ ½A0;A1	d
ðnÞðyÞ

¼ fxAA0 þ A1; (fAFð %AÞ; f ðyÞ ¼ x; f ðmÞðyÞ ¼ 0; m ¼ 1;y; ng

with the corresponding norm of the infimum and fA0;A1gd
ðnÞðyÞ defined in analog

way with Gð %AÞ instead of Fð %AÞ: We shall call them Schechter spaces. If %A ¼
ðLp0 ;Lp1Þ; then %AdðnÞðyÞ ¼ fA0;A1gdðnÞðyÞ and %AdðnÞðyÞ ¼ fA0;A1gd

ðnÞðyÞ and we shall refer

to them as the first and second Schechter method, respectively.

Remark 2.1. Some general facts concerning these spaces which will be useful in the
sequel are the following:

(i) If aA %Ay and jy :O-D is a conformal map from O onto the unit disc D so that
jyðyÞ ¼ 0; then,

jj0
yðyÞj ¼

p
2 sin py

;

M.J. Carro / Journal of Approximation Theory 120 (2003) 283–295 285



and thus jj0
yðyÞj ¼ Oð1=yÞ when y-0: Therefore, if FAF is such that FðyÞ ¼ a; the

function G ¼ jyFAF satisfies that jjGjjF ¼ jjF jjF and G0ðyÞ ¼ j0
yðyÞa: Hence,

%AyC %Ad0ðyÞ with norm less than or equal to 2
p sin py:

(ii) If FAF satisfies that FðyÞ ¼ 0; then G ¼ F=jyAF and F 0ðyÞ ¼ j0
yðyÞGðyÞ:

Therefore, F 0ðyÞA %Ay and jjF 0ðyÞjjyp p
2 sin py jjF jjF:

From now on, jy will be the conformal map from O onto D we have mentioned
above.

Let us now recall the definition of Calderón analytic families of operators
(see [4,7]):

Definition 2.2. Let ðA0;A1Þ and ðB0;B1Þ be two compatible couples of Banach

spaces. Let %L ¼ fLxgxA %O be such that

Lx : A0-A1-B0 þ B1:

We say that %L is a Calderón analytic family of operators and we write %LAC; if the
following conditions hold:

(i) for every lAðB0 þ B1Þn and every aAA0-A1; the function /l;LxaSAAðOÞ;
(ii) for every tAR;

Ljþit : ðA0-A1; jj jjAj
Þ-ðBj; jj jjBj

Þ

is bounded and there exist two continuous functions Mj :R-Rþ so that

log Mjð�ÞAL1ðmjðx; �ÞÞ; where mj is the Poisson kernel for O ðj ¼ 0; 1Þ and

jjLjþitjjpMjðtÞ;
(iii) for every aAA0-A1; the function M�1L�aAFð %BÞ; where M ¼ expðCÞ and C

is an analytic function in O whose real part is

X1
j¼0

Z
N

�N

log MjðtÞmjðx; tÞ dt:

Moreover, if jjMjj
N
p1; we say that %L is a uniformly bounded Calderón analytic

family and we write %LABC:

Then, the following extension of the theorem of Stein (see [15]) and Theorem 1 in
[7] was proved in [4]:

Theorem 2.3. Let ðA0;A1Þ and ðB0;B1Þ be two compatible couples of Banach spaces

and let %LABC: Then,

ðLxÞðnÞðyÞ : fA0;A1gd
ðnÞðyÞ- %BdðnÞðyÞ
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is bounded with norm less than or equal to 1; that is

jjðLxÞðnÞðyÞajj %B
dðnÞðyÞ

pjjajj
fA0;A1gd

ðnÞðyÞ :

Now, let us assume that, for each 0oyo1; we consider a family LyABC: Then, by
Theorem 2.3, we can conclude that

%lim
y-0

jjðLy
xÞ

ðnÞðyÞajj %B
dðnÞðyÞ

p %lim
y-0

jjajj
fA0;A1gd

ðnÞðyÞ : ð1Þ

Our purpose now is to show that inequality (1) gives us, when applied to the

couples %A ¼ ðLp0ðmÞ;Lp1ðmÞÞ and %B ¼ ðLq0ðnÞ;Lq1ðnÞÞ; a sufficient condition for the

ðp0; q0Þ boundedness of the linear operator Tf ¼ limy-0 y
nðLy

xÞ
ðnÞðyÞ; whenever this

limit exists. As a consequence, we shall get the announced multiplier result.
From (1), we notice that one of the things we have to do is to study the behavior of

the Schechter interpolation spaces ðLp0ðmÞ;Lp1ðmÞÞdðnÞðyÞ and fLp0ðmÞ;Lp1ðmÞgd
ðnÞðyÞ

when y goes to zero.
For the classical Calderón interpolation spaces, it is known that ðLp0ðmÞ;Lp1ðmÞÞy

is isometric to LpðyÞðmÞ where, as usual,

1

pðyÞ ¼
1� y

p0
þ y

p1
; ð2Þ

and hence, for every fALp0ðmÞ-Lp1ðmÞ;
%lim

y-0
jjf jjðLp0 ðmÞ;Lp1 ðmÞÞy ¼ jjf jjp0

:

In what follows, pðyÞ will be defined by (2).
Also, it is known (see [5,6]) that

fLp0ðmÞ;Lp1ðmÞgd0ðyÞ ¼ ðLp0ðmÞ;Lp1ðmÞÞd0ðyÞELf

and

fLp0ðmÞ;Lp1ðmÞgd
0ðyÞ ¼ ðLp0ðmÞ;Lp1ðmÞÞd

0ðyÞELj;

where Lf and Lj are Orlicz spaces with

fðtÞ ¼ t

1þ jlog tj

� �pðyÞ
and jðtÞ ¼ ðtð1þ jlog tjÞÞpðyÞ:

However, the constants in the above equivalence depend on y and hence, our first
goal consists in finding a better equivalence than the above one.

In this section, we shall prove the equivalence of the spaces ðLp0 ;Lp1ÞdðnÞðyÞ and

ðLp0 ;Lp1Þd
ðnÞðyÞ with some Orlicz spaces so that the constants in such equivalence do

not depend on y:
Let us start by analyzing the right-hand side of (1). In Ref. [6] it was shown that

fLp0 ;Lp1gd
ðnÞ
y ¼ ðLp0 ;Lp1Þd

ðnÞ
y ¼ f measurable; f 1þ log

jf j
jjf jjpðyÞ

�����
�����

 !n

ALpðyÞ

( )
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and

jjf jj
ðLp0 ;Lp1 Þd

ðnÞ
y
t f 1þ log

jf j
jjf jjpðyÞ

�����
�����

 !n�����
�����

�����
�����
pðyÞ

ty�njjf jj
ðLp0 ;Lp1 Þd

ðnÞ
y
:

Modifying slightly the proof of the above theorem (we include here the new proof
for the sake of completeness) we get the following result:

Theorem 2.4. fAðLp0 ;Lp1Þd
0ðyÞ

if and only if f ð1þ jlog jf j jÞALpðyÞ and

jjf jjðLp0 ;Lp1 Þd0ðyÞEjjf jjpðyÞ þ
yðp0 � p1Þ

p1 þ yjp0 � p1j
f log

f

jjf jjpðyÞ

�����
�����

�����
�����
pðyÞ

:

Proof. Let fAðLp0 ;Lp1Þd
0ðyÞ and let e40: Then, there exists FAF such that FðyÞ ¼ f ;

F 0ðyÞ ¼ 0 and jjF jjFpjjf jjðLp0 ;Lp1 Þd0ðyÞ þ e: The first condition implies that fALpðyÞ and

jjf jjpðyÞpjjF jjF:

Let H ¼ F � Hf ; where

Hf ðxÞ ¼
f

jf j
jf j

jjf jjpðyÞ

 !ðð1�xÞp1þxp0Þ
pðyÞ
p0p1

jjf jjpðyÞ:

Then HðyÞ ¼ 0 and

H 0ðyÞ ¼ ðp0 � p1Þ
p1 þ yðp0 � p1Þ

f log
jf j

jjf jjpðyÞ
:

Hence, by Remark 2.1(ii), f log jf j
jjf jjpðyÞ

ALpðyÞ; and

f log
jf j

jjf jjpðyÞ

�����
�����

�����
�����
pðyÞ

t
p1 þ yðp0 � p1Þ

yjp0 � p1j
jjHjjF

t
p1 þ yðp0 � p1Þ

yjp0 � p1j
ðjjF jjF þ jjf jjpðyÞÞt

p1 þ yðp0 � p1Þ
yjp0 � p1j

jjF jjF:

Therefore,

jjf jjpðyÞ þ
yðp0 � p1Þ

p1 þ yjp0 � p1j
f log

f

jjf jjpðyÞ

�����
�����

�����
�����
pðyÞ

tjjF jjFpjjf jjðLp0 ;Lp1 Þd0 ðyÞ þ e:

Letting e tend to zero, we are done.

Conversely, if f ð1þ log jjf jÞALpðyÞ and we call g ¼ f log jf j
jjf jjpðyÞ

; we only have to

consider the function

G ¼ j0
yðyÞ

p1 þ yðp0 � p1Þ
ðp0 � p1Þ

Hf � jyHg
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to see that fAðLp0 ;Lp1Þd
0ðyÞ and that the corresponding inequality for fAðLp0 ;Lp1Þd

0ðyÞ

holds. &

Theorem 2.5. For every fALp0-Lp1 ; we have that

%lim
y-0

jjf jjðLp0 ;Lp1 Þd0ðyÞEjjf jjp0
:

Corollary 2.6. Let %L : ðLp0 ;Lp1Þ-ðLp0 ;Lp1Þ be a uniformly bounded Calderón analytic

family of operators. Then, for every fALp0-Lp1 ;

lim
y-0

jjL0
yf jjðLp0 ;Lp1 Þd0 ðyÞtjjf jjLp0 :

To analyze the left-hand side of (1) and also of Corollary 2.6, we have to study the
behavior when y tends to zero of the first method of Schechter. Carro and Cerdà [5]
proved that

½Lp0 ;Lp1 	dðnÞy
EMC;

where

MC ¼ ff ; f ¼ f0 þ f1 log jf1j; f0; f1ALpðyÞg

endowed with the norm

jjf jjMC
Ejjf0 þ f1 log jjf1jjpðyÞjjpðyÞ þ jjf1jjpðyÞ;

and the constants in the above equivalence are as follows:

jjf jj %A
dðnÞðyÞ

tjjf jjMCn
ty�njjf jj %A

dðnÞðyÞ
:

To avoid the dependence in y of the above constants, we have to modify the proof
of Theorem 3.1 in [5] to obtain the following one:

Theorem 2.7. Let

MCy ¼ f ; f ¼ f0

y
þ f1 log

jf1j
jjf1jjpðyÞ

; f0; f1ALpðyÞ

( )

with

jjf jjMCy
¼ inffjjf0jjpðyÞ þ jjf1jjpðyÞg;

where the infimum extends to the collection of all functions f0 and f1 satisfying that

f ¼ f0
y þ f1 log jf1j=jjf1jjpðyÞ: Then,

ðLp0 ;Lp1Þd0ðyÞ ¼ MCy :
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To study the space MCy ; set

gyðxÞ ¼
x

y
ð1þ yjlog xjÞ:

Obviously, gy is an increasing and one-to-one function from Rþ onto Rþ and hence
we can define the increasing and one-to-one function

Cy ¼ ðg�1
y ÞpðyÞ:

Then, one can easily see that

C�1
y ðxÞ ¼ x1=pðyÞ

y
1þ y

pðyÞ jlog xj
� �

:

From this expression we get that CyðxÞEðyxð1þ y
pðyÞjlog xjÞ�1ÞpðyÞ and hence there

exists a constant C such that Cð2tÞpCCðtÞ: Therefore,

LCy ¼ f ;

Z
Cyðjf ðxÞjÞ dxoþN


 �

is a linear space. Set

jjf jjCy
¼ inf k40;

Z
Cy

jf ðxÞj
k

� �
dxp1


 �
:

Since, in general Cy is not a convex function, we do not have that the above
expression is a norm but we have the following properties:

(i) jjlf jjCy
¼ jljjjf jjCy

; for every lAR;

(ii) if jjf jjCy
¼ 1 then

R
Cyðjf ðxÞjÞ dx ¼ 1;

(iii) jjf jjCy
pyjjf jjpðyÞ;

(iv) if A is such that

sup
t

2Cyðt=AÞ
CyðtÞ

p1

then

jjf þ gjjCy
p2Aðjjf jjCy

þ jjgjjCy
Þ:

Theorem 2.8.

LCy ¼ MCy :

Proof. Let p ¼ pðyÞ and let us assume without loss of generality that fX0: If

jjf jjCy
¼ 1; we have that

R
Cyðf Þ ¼ 1; and hence, if g ¼ Cyðf Þ1=p; we obtain that

gALp and jjgjjp ¼ 1: Now,

f ¼ C�1
y ðCyðf ÞÞ ¼ gyðCyðf Þ1=pÞ ¼ gyðgÞ ¼

g

y
ð1þ yjlog gjÞ;

and thus jjf jjMCy
t1:
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Let f ¼ f0=yþ f1 log
jf1j
jjf1jjp

: Then, for k to be chosen later on

Z
Cy

jf j
2kjjf1jjp

 !
p
Z

Cy

maxðjf0y þ f1 log kj; jf1jðjlog jf1j
kjjf1jjp

jÞÞ
kjjf1jjp

0
@

1
A

p
Z

Cy
jf0y þ f1 log kj

kjjf1jjp

 !
þ
Z

Cy

jf1jðjlog jf1j
kjjf1jjp

jÞ
kjjf1jjp

0
@

1
A

p yp

Z jf0y þ f1 log kj
kjjf1jjp

 !p

þ 1

kp

p
2p

kp

jjf0jjpp
jjf1jjpp

þ jlog kjp þ 1

 !
;

and using that log kpk=e; we get that if

k ¼
ðjjf0jjpp þ jjf1jjppÞ

1=p

jjf1jjp
ð2�p � e�pÞ�1=p

then Z
Cy

jf j
2kjjf1jjp

 !
p1:

Therefore, jjf jjCy
p2ð2�p � e�pÞ�1=pðjjf0jjp þ jjf1jjpÞ: &

Theorem 2.9. For every 0oyo1; it holds that

ðLp0 ;Lp1Þd0ðyÞ ¼ LCy :

Lemma 2.10.

(i) For every fALp0-Lp1 ;

%lim
y-0

1

y
jjf jjCy

tjjf jjp0
:

(ii) For every f ;

jjf jjp0;N
t

%
lim
y-0

1

y
jjf jjCy

:

Proof. (i) First we observe that if fALp0-Lp1 ; then

jjf jjpðyÞpjjf jj1�y
p0

jjf jjyp1
:
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And using Remark 2.1(i), we have that

%lim
y-0

1

y
jjf jjCy

E %lim
y-0

1

y
jjf jj %Ad0ðyÞ

t %lim
y-0

jjf jj %Ay

¼ %lim
y-0

jjf jjpðyÞp %lim
y-0

jjf jj1�y
p0

jjf jjyp1
¼ jjf jjp0

:

(ii) To prove the second part, we observe that

Cy
t

l

� �
lf ðtÞp

Z
N

0

Cy
jf ðxÞj
l

� �
dx

and therefore,

jjf jjCy
Xinf l40; sup

z40
Cyðz=lÞlf ðzÞp1


 �
:

Now, supz40 Cyðz=lÞlf ðzÞp1 if and only if lXy supz
zlf ðzÞ1=pðyÞ

1þ y
pðyÞjlog lf ðzÞj

; and, hence,

jjf jjCy
Xy sup

z

zlf ðzÞ1=pðyÞ

1þ y
pðyÞ jlog lf ðzÞj

:

From this, we deduce that, for every z40;

%
lim
y-0

zlf ðzÞ1=pðyÞ

1þ y
pðyÞ jlog lf ðzÞj

t
%
lim
y-0

1

y
jjf jjCy

;

and hence

jjf jjp0;N
t

%
lim
y-0

1

y
jjf jjCy

: &

Theorem 2.11. For every fALp0-Lp1 ; it holds that

%lim
y-0

1

y
jjf jjCy

Ejjf jjp0
:

Proof. Let ly ¼ 1
yjjf jjCy

: Then, by the previous lemma, we have that, if fa0;

0o
%
lim
y-0

lyp %lim
y-0

lyoN;

and hence limy-0 yjlogðy=ðylyÞÞj ¼ 0: Therefore,

%
lim
y-0

Cy
y

yly

� �
¼ y

%limy-0 ly

� �p0

:
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From this, using Fatou’s lemma we get that

jjf jjp0

%limy-0 ly

� �p0

¼
Z jf ðxÞj

%limy-0 ly

� �p0

dxp
Z

%
lim
y-0

Cy
jf ðxÞj
yly

� �
dx

p
%
lim
y-0

Z
Cy

jf ðxÞj
yly

� �
dxp1;

from which the result follows. &

In fact, modifying slightly the above proof, one can easily see that something
stronger holds:

Theorem 2.12. If fy converges to f almost everywhere, then

jjf jjp0
t %lim

y-0

1

y
jjfyjjCy

:

3. A multiplier result

Let us formulate our main result.

Theorem 3.1. Let T be a linear operator such that, for every y; there exists a uniformly

bounded Calderón analytic family of operators Ly : ðLp0 ;Lp1Þ-ðLq0 ;Lq1Þ so that, for

every fALp0-Lp1 ; yðLyÞ0yf converges to Tf almost everywhere. Then

T : Lp0-Lq0

is bounded.

Proof. By Theorem 2.3, we have that

1

y
jjyðLyÞ0yf jjCy

pjjf jjðLp0 ;Lp1 Þd0ðyÞ :

Then, letting y-0 and applying Theorems 2.5 and 2.12, we get that, for every
fALp0-Lp1 :

jjTf jjq0
tjjf jjp0

: &

In the following example, we have that ðLyÞ0y ¼ 1
y T ; and hence the conclusion of

our theorem holds.

Theorem 3.2. Let mALN and let us assume that there exists a bounded function S such

that

mðxÞ
SðxÞ SðxÞitAMp;

uniformly in tAR: Then, mðlog SÞAMp:
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Proof. Let f be in the Schwartz class of rapidly decreasing CN functions and let K

be a compact set in Rn: Let us consider the operators

Ty
z f ðxÞ ¼ wKðxÞ

Z
Rn

f̂ðxÞ mðxÞ
SðxÞ SðxÞz=y

e2pixx dx:

Then, if z ¼ it; we have, by hypothesis, that Ty
itfALp and suptAR jjTy

itf jjp;p ¼
C1oN: Also, using the dominated convergence theorem, one can show that Ty

itf is

an Lp-continuous function in the variable t: On the other hand, using the

boundedness of S; one can immediately see that Ty
1þitfAL2 uniformly in tAR with

constant jjm=Sjj
N
jjSjj1=y

N
; and this function defines an L2-continuous function in the

variable t: Hence, if we consider the analytic families of operators

Ty : ðLp;L2Þ-ðLp;L2Þ;

and MyðxÞ ¼ C
ð1�yÞ

y x with C ¼ maxðC1; jjSjjNÞ; we obtain that the family Ly ¼
Ty=MyABC and

ðLyÞ0ðyÞ ¼ Cy�1

y
ðT � LÞ;

where L ¼ Ly
y and T is the operator associated to the multiplier m log S: Now, we

know (see [7]) that L ¼ Ly
y : LpðyÞ-LqðyÞ uniformly in y and hence L : Lp-Lp is

bounded.
From this and Theorem 3.1, it follows that the operator T is bounded on Lp:

Expanding K up to Rn; we get the conclusion of the theorem. &

4. The case n41

As was said in the introduction all the results of this paper can be extended to the
general case nAN: In particular, the following results hold:

Theorem 4.1. For every fALp0-Lp1 ;

%lim
y-0

jjf jj
ðLp0 ;Lp1 Þd

ðnÞðyÞEjjf jjp0
:

Theorem 4.2.

ðLp0 ;Lp1ÞdðnÞðyÞ ¼ LCn;y ;

where Cn;y ¼ ðg�1
n;yÞ

pðyÞ
and gn;yðxÞ ¼ x

yðn þ y log xÞn:
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Theorem 4.3.

(i) For every fALp0-Lp1 ;

%lim
y-0

1

yn jjf jjCn;y
Ejjf jjp0

:

From these results, one can easily deduce the following generalization of Theorem
3.1 and the corresponding extension of Theorem 3.2.

Theorem 4.4. Let T be a linear operator such that, for every y; there exists a uniformly

bounded Calderón analytic family of operators Ly : ðLp0 ;Lp1Þ-ðLq0 ;Lq1Þ so that

ynðLyÞðnÞy f converges to Tf almost everywhere, for every fALp0-Lp1 : Then

T : Lp0-Lq0

is bounded.

Theorem 4.5. Under the hypotheses of Theorem 3.2, we have that, for every kAN;

mðlog SÞkAMp:

Acknowledgments
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